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BACKGROUND: Type 2 diabetes is a leading contributor to the global burden of morbidity and mortality. Ozone (O3) exposure has previously been
linked to diabetes.
OBJECTIVE:We studied the impact of O3 exposure on incident diabetes risk in elderly Mexican Americans and investigated whether outdoor physical
activity modifies the association.
METHODS: We selected 1,090 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007.
Ambient O3 exposure levels were modeled with a land-use regression built with saturation monitoring data collected at 49 sites across the
Sacramento metropolitan area. Using Cox proportional hazard models, we estimated the risk of developing incident diabetes based on average O3 ex-
posure modeled for 5-y prior to incident diabetes diagnosis or last follow-up. Further, we estimated outdoor leisure-time physical activity at baseline
and investigated whether higher vs. lower levels modified the association between O3 exposure and diabetes.
RESULTS: In total, 186 incident diabetes cases were identified during 10-y follow-up. Higher levels of physical activity were negatively associated
with incident diabetes [hazard ratio ðHRÞ=0:64 (95% CI: 0.43, 0.95)]. The estimated HRs for incident diabetes was 1.13 (95% CI: 1.00, 1.28) per 10-
ppb increment of 5-y average O3 exposure; also, this association was stronger among those physically active outdoors [HR=1:52 (95% CI: 1.21,
1.90)], and close to null for those reporting lower levels of outdoor activity [HR=1:04 (95% CI: 0.90, 1.20), pinteraction = 0:01].
CONCLUSIONS: Our findings suggest that ambient O3 exposure contributes to the development of type 2 diabetes, particularly among those with higher
levels of leisure-time outdoor physical activity. Policies and strategies are needed to reduce O3 exposure to guarantee that the health benefits of physi-
cal activity are not diminished by higher levels of O3 pollution in susceptible populations such as older Hispanics. https://doi.org/10.1289/EHP8620

Introduction
Type 2 diabetes is a complex and chronic metabolic disorder
caused by insulin resistance and beta cell dysfunction (Stumvoll
et al. 2005). Type 2 diabetes has become a growing global and
national public health concern and increases the risk of several
adverse health outcomes, such as cardio- and cerebrovascular and
neurodegenerative diseases (American Diabetes Association
2014). In the United States, the prevalence of Type 2 diabetes is
higher among Hispanics compared with non-Hispanic Whites. It
has been estimated that in 2018 the prevalence was ∼ 14:7%
among Hispanic adults and ∼ 11:9% among non-Hispanic Whites
(CDC 2020). Among those 65–74 years of age, the prevalence
reached 33.8% in Hispanics and 17.6% in non-Hispanic Whites;
and among those≥75 years of age, 30.6% and 18.8% in Hispanics
and non-Hispanic Whites, respectively (https://gis.cdc.gov/grasp/
diabetes/diabetesatlas.html). Although development of diabetes
has typically been related to obesity and physical inactivity, its

etiology is complex and heterogeneous. More recently it has been
suggested that environmental risk factors such as air pollution may
also play amajor role (Yang et al. 2020).

Despite great improvements in air quality control, ozone (O3)
still remains a major concern for public health in the United
States, especially in California. As a secondary gaseous air pollu-
tant formed from traffic-related precursors under the influence
of sunlight, tropospheric O3 concentrations have continuously
increased in the last century, especially in areas downwind of
urban centers with dense populations (Parrish et al. 2012) and
high volumes of traffic. O3 has been associated with a range of
adverse health outcomes in observational studies, including car-
diopulmonary diseases (Jerrett et al. 2009; Lim et al. 2019) and
metabolic disorders (Hu et al. 2015; Jerrett et al. 2017).

The general health benefits of physical activity are well known.
There is growing evidence that adequate physical activity, such as
from recreational activities, protects against cardiovascular, meta-
bolic, and neurodegenerative disorders (Blair 2009; Inoue et al.
2020; Paul et al. 2019; Shih et al. 2018; Williams 2009). During
exercise, a number of physiologic changes occur, including an
increase in the inhalation rate or depth, increasing the amount of air
pollution entering the lower airways with potentially adverse
impacts such as inflammatory responses and oxidative stress
(Araneda et al. 2021; Morse 2005; Nicolò et al. 2018). Thus, the
beneficial effects that outdoor physical activities have on human
health may have to be weighed against the detrimental impacts of
air pollution in areas affected by high pollution levels, such as the
Sacramento area of California.

There is ample evidence for an association between air pollu-
tion such as particulate matter (PM) and nitrogen oxides (NOx)
and diabetes (Andersen et al. 2012; Brook et al. 2008; Coogan
et al. 2012; Krämer et al. 2010; Pearson et al. 2010; Puett et al.
2011; Raaschou-Nielsen et al. 2013). Recently, researchers
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started to investigate the impact of O3 on diabetes, including
diabetes-related mortality (Lim et al. 2018; Zanobetti and
Schwartz 2011; Zúñiga et al. 2016) and gestational diabetes (Hu
et al. 2015; Pan et al. 2017; Robledo et al. 2015). However, there
are few longitudinal studies investigating the role of O3 expo-
sure in diabetes development (Jerrett et al. 2017; Li et al. 2018;
Renzi et al. 2018). Mexican Americans, the fastest growing seg-
ment of the U.S. population (U.S. Census Bureau 2018), have a
high prevalence of diabetes (Aguayo-Mazzucato et al. 2019)
and are also among the most highly air pollution exposed popu-
lations in California (OEHHA 2018). Yet, thus far we are not
aware of any studies that have explored the relationship
between O3 exposure and diabetes or evaluated whether out-
door physical activity modifies associations between O3 and di-
abetes in this population. Thus, the objective of this study was
to investigate a) whether exposure to O3 is associated with the
risk of incident diabetes; and b) whether higher outdoor physi-
cal activity levels modify this association among older Mexican
Americans enrolled in the Sacramento Area Latino Study on
Aging (SALSA) study.

Methods
All procedures described here were approved by the Institutional
Review Boards of the Universities of California, San Francisco,
Los Angeles, and Davis; the University of North Carolina; and
the University of Michigan. All participants provided written
informed consent.

Study Population
Study participants were enrolled in the SALSA study, a longitu-
dinal cohort of older Mexican Americans who lived in the
Sacramento area. The recruitment was conducted in the
Sacramento metropolitan area and surrounding suburban and

rural counties, with a percentage of old-age (≥60 years of age)
Hispanic residents of at least 5% based on 1990 and 1998 U.S.
Census information (Haan et al. 2003; Mungas et al. 2018).
Participants were contacted via mail, telephone, and door-to-
door neighborhood enumeration. Participants who a) were
≥60 years of age; b) resided in the six counties of the California
Sacramento Valley; c) self-identified as Latinos; d) were Spanish
or English speakers; and e) were living in a noninstitutionalized
setting were eligible to be enrolled in the study. Cognitive func-
tion at baseline was not an eligibility criterion for inclusion in the
study. Among those eligible and contacted, 83.5% agreed to par-
ticipate in the study. In total, 1,789 participants were recruited at
baseline (1998 and 1999). Participants were interviewed in their
homes at baseline, and follow-up home visits were conducted ev-
ery 12–15 months until the end of 2007, for a maximum of seven
follow-up visits. Between home visits, a 10-min phone call every
6 months was performed until the end of the study to update par-
ticipants’ contact information, health status, and medication in-
formation. The average annual attrition rate from mortality and
loss to follow-up was 2.6% and 2.3%, respectively. The average
length of follow-up was 6.5 y, with a maximum of 10 y (Haan
et al. 2003). Those who a) did not participate in the interview at
baseline (n=3); b) lived too far from traffic sources to generate
O3 exposure measures (n=3); c) already had diabetes at baseline
(n=585); d) did not provide information of diabetes status at
baseline (n=7); e) did not provide information about outdoor
recreational physical activities (n=59); or f) did not have any
follow-up visits (n=42) were excluded, leaving 1,090 partici-
pants for analysis (Figure 1).

Ozone Exposure Assessment
The O3 concentrations were estimated based on a land-use
regression (LUR) model. To build this model, we conducted two

Figure 1. Flow chart of study population, Sacramento Area Latino Study on Aging (SALSA), 1998–2007.
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O3 saturation monitoring campaigns in the Sacramento metropol-
itan area at 49 sites, one in late spring (20 May 2016–3 June
2016) and one in winter (2 December 2016–16 December 2016).
The mean and standard deviation (SD) of the measured O3 con-
centrations were 21.5 and 4:7 ppb, respectively. For LUR model-
ing, we applied the deletion/substitution/addition (D/S/A)
algorithm to generate an annual prediction model (Beckerman
et al. 2013; Su et al. 2015). More details can be found elsewhere
(Su et al. 2020). Briefly, the D/S/A algorithm is an aggressive
model search algorithm that follows three steps—a) deletion
(which removes a term from the model); b) substitution (which
replaces one term with another); and c) addition (which adds a
term to the model)—based on existing terms in the current
best model in order to iteratively generate polynomial general-
ized linear models. The LUR model was developed specifi-
cally for the Sacramento metropolitan area using saturation
monitoring data we collected in 2016, with the input of both
buffered (i.e., land cover and traffic) and nonbuffered data
sources (i.e., distance to coast and roadways). Because we had

only 1 y of O3 data, the LUR model was built without using
repeated measures of individual air quality monitoring stations
for the modeling process. The O3 concentration surface
throughout the Sacramento area was first generated at a spatial
resolution of 30× 30 m (Figure S1) and then averaged within a
1-km radius using zonal statistics through the mean function
to account for regional impact due to temperature effects
(Figure 2). The final LUR model had an adjusted prediction
power (adjusted R2) of 76% (Miles 2014).

Each residential home address was first assigned the modeled
annual pollutants concentrations for O3 in the reference year
2016 (Sacramento-specific surface) (Figure 2; Figure S1). There
were eight U.S. Environmental Protection Agency (EPA) air
quality monitoring sites for O3 in total in the Sacramento area.
The data (maximum 8-h daily O3 concentration) from the nearest
monitoring site with an effective annual measurement (at least
75% completeness in each quarter of a year) for a specific year
was then used (U.S. EPA 2006), along with the modeled O3 data,
to estimate the annual exposures for the years 1988–2007 at each

Figure 2. Estimated annual average ozone (O3) concentration surface in the Sacramento area in 2016 with a spatial resolution of 1 × 1 km, Sacramento Area
Latino Study on Aging (SALSA, 1998–2007). Ambient O3 exposure levels were modeled with a land-use regression built with saturation monitoring data col-
lected at 49 sites across the Sacramento metropolitan area. The base map was developed by National Geographic and ESRI and reflects the distinctive National
Geographic cartographic style in a multiscale reference map of the world. The map was authored using data from a variety of leading data providers, including
Garmin, HERE Technologies, the United Nations Environment Programme’s World Conservation Monitoring Centre, the National Aeronautics and Space
Administration, the European Space Agency, and the U.S. Geological Survey, and others. County boundary data was taken from the California Open Data
Portal (https://data.ca.gov/dataset/ca-geographic-boundaries).
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residential address. For a residential address of location i at year t
with reference year d, the exposure value Ej

i,d,t for pollutant j
(here j=O3) were calculated as follows:

Ej
i,d,t =Cj

d, i ×
Cj
m,t

cjm,d
,

where Cj
d, i is the modeled concentration of pollutant j at location

i in reference year d; Cj
m,t is the measured concentration of pollu-

tant j at the U.S. EPA monitor m that is closest to location i in
year t; cjm,d is the concentration of pollutant j at the nearest U.S.
EPA monitor m in reference year d.

Diabetes
During the visits at baseline and follow-up, diabetes was defined
as the presence of any one of the three following conditions: a)
self-reported physician diagnosis (participants were asked if a
physician had ever told them that they had diabetes); b) antidia-
betic medication use; or c) a fasting glucose level >126 mg=dL
(7:0mmol=L). The fasting glucose level was measured at base-
line and at almost all follow-up visits (first, third, fourth, fifth,
and sixth follow-up visits) using the Cobas Mira Chemistry
Analyzer (Roche Diagnostics Corporation, Indianapolis, IN)
(Mayeda et al. 2015), and participants were required to have had
no caloric intake for ≥8 h before the tests. Diabetes medication
use was recorded after a medicine cabinet inventory at each
home visit and was updated during intermittent phone calls [clas-
sified according to the Centers for Disease Control and
Prevention Ambulatory Care Drug Database (http://www2.cdc.
gov/drugs)]. At baseline, neither the date of physician diagnosis
nor the start date of medication use was queried, but diabetics
identified at baseline were excluded from the analyses. After
each exam, participants were provided with a blood test result
report for their health care provider. During study visits, >97%
of participants whose fasting blood glucose was >126 mg=dL
also self-reported a previous physician diagnosis of diabetes;
∼ 70% of participants with a self-reported diagnosis were taking
medication, and everyone taking medications reported a physi-
cian diagnosis. Thus, the agreement between fasting glucose level
and self-reported diagnosis and medication use was relatively
high in our study and confirmatory of the diagnosis.

Incident cases of diabetes were participants without diabetes at
baseline who developed diabetes during follow-up. As the date of
an incident diabetes diagnosis, we chose the home visit date during
which the condition was first recorded according to our criteria.
Given that all participants were already ≥60 years of age, most
incident cases identified were most likely type 2 diabetes (Mayeda
et al. 2015; Shih et al. 2018). In the following, we use “diabetes” to
hereafter refer to type 2 diabetes.

Outdoor Leisure-Time Physical Activities
Participants were asked to report the average number of hours
they spent on 18 different types of activities during a regular
week at baseline (for example, participants were asked, “How
many hours per week do you do garden or yardwork?”) without
querying leisure-time or nonoccupational activities specifically.
Among the 18 activities, we selected 7 physical activities (doing
yardwork, taking walks to other places such as grocery shops,
swimming or working out, dancing, hunting or camping or boat-
ing, golf or other moderate exercise games, or walking around
the neighborhood) that are likely to be performed outdoors. Each
activity was assigned a metabolic equivalent of task (MET)
according to the Compendium of Physical Activities (Ainsworth
et al. 2000), and the MET value was multiplied by the reported

time (hours/week) spent performing the activity (MET-hours/
week) for each activity. Finally, we summed the MET-hours/
week values for the 7 activities to generate a cumulative outdoor
physical activity measure.

Other Covariates
Demographic information including birthplace (Mexico, the
United States, or other), years of education, and longest held
occupation during the lifetime (nonmanual labor, manual labor,
or other) were also collected at baseline. At each interview, par-
ticipants also reported household income, marital status, smok-
ing, health status, and medication use. Body mass index (BMI; in
kilograms/meter squared) was calculated according to standing
height and weight collected by trained interviewers (Shih et al.
2018). Activities of daily living (ADL) was derived on a self-
reported multi-format scale (0, independent; 1, supervision; 2,
limited assistance; 3, extensive assistance; 4, total dependence; 7,
activity occurred only once or twice; and 8, activity did not
occur) referring to six activities, including bathing, dressing, eat-
ing, transferring, toileting, and continence (Inoue et al. 2020). An
indicator for urban or rural residential location was generated
relying on U.S. Census tract 2000 information (U.S. Department
of Agriculture Economic Research Service 2019). Neighborhood
socioeconomic status (NSES) is represented as a score ranging
from 1 to 5 (low to high NSES) depending on six 2000
U.S. Census (https://www.census.gov/programs-surveys/decennial-
census/decade.2000.html) estimates: percentage of a) individuals
≥25 years of age without a high school diploma; b) individuals
below the poverty limit; c) individuals ≥16 years of age who had
been in the workforce at one time but are unemployed; d) house-
holds owning their home; e) vacant housing units; and f) median
number of rooms in a household (Yost et al. 2001).

Details for how we generated local traffic-related NOx and
noise estimates have been described elsewhere (Yu et al. 2020).
Briefly, local traffic-related NOx level at baseline was assessed
using the California Line Source Dispersion Model (version 4;
CALINE4) (Benson and Pinkerman 1989; Wu et al. 2009, 2016)
with the input of 2002 traffic data and meteorology data from the
California State Department of Transportation and the California
Air Resources Board Air Quality and Meteorological Information
System (https://www.arb.ca.gov/aqmis2/metselect.php), respec-
tively. Traffic-related noise exposure was estimated using the
SoundPLAN (version 8.0; NAVCON, Fullerton, CA, USA) soft-
ware package, which is implemented with a noise prediction
model; that is, the Federal Highway Administration Traffic Noise
Model that uses annual average daily traffic data from
Metropolitan Planning Organizations. Similar to the Sacramento-
specific 2016 LUR modeling for O3, we also modeled LUR-based
nitrogen dioxide (NO2) concentration (mean±SD) for the
Sacramento area at 69 sites (6:1± 9:4 ppb). Similar predictors as
used for O3 modeling went into the D/S/Amodeling framework for
NO2 predictions, and the model had an adjusted prediction power
of 60%. Fine particulate matter with an aerodynamic diameter of
≤2:5 lm (PM2:5) estimates were also derived with the D/S/A LUR
modeling technique based on 110 unique governmentalmonitoring
stations located throughout California (10:7±3:9lg=m3), with an
adjusted prediction power of 64%. The residential exposures for
NO2 and PM2:5 for the years 1988–2013 were estimated in a way
similar to that estimated for O3 exposures, using the same equation
and in which the pollutant j was changed to NO2 or PM2:5, respec-
tively. The University of Idaho Gridded Surface Meteorological
Dataset (GRIDMET; https://developers.google.com/earth-engine/
datasets/catalog/IDAHO_EPSCOR_GRIDMET) was used to gen-
erate the temperature for the study region.
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Statistical Methods
Cox proportional hazards regression models with calendar time
as the underlying time scale were used to estimate the impact of
O3 exposures for each calendar year on incident diabetes.
Participants were censored at their last date of contact only if
they did not return for a follow-up visit or at the time of death
before 31 December 2007. Mortality data was collected through
interviews with family members when we did not reach partici-
pants for annual follow-up visits or during the interim 6-month
phone calls, by reviewing online death notices, checking the
Social Security Death Index, the National Death Index, and
California state vital statistics data.

Time-varying O3 exposures were calculated as the O3 levels
averaged over the 5 calendar years prior to the onset of an event
for everyone in the risk set at the event time and treated as contin-
uous variables scaled by the interquartile ranges (IQRs). Because
the effect estimates for the first three quartiles of physical activity
level and diabetes incidence were very similar (data not shown),
we merged these into one category to increase analysis power;
thus, outdoor leisure-time physical activity was dichotomized
into a low (outdoor physically inactive) and a high (outdoor phys-
ical active) level comparing the highest to the first three quartiles
(<74:5 vs. ≥74:5 MET-h/wk) among those who reported engag-
ing in at least one of the seven selected activities, based on the
distribution observed for the entire SALSA cohort (Table S1).

To examine the impact of O3 exposure on diabetes, we
selected covariates for adjustment based on the prior literature for
O3 exposures and diabetes (Jerrett et al. 2017; Renzi et al. 2018)
and included demographic-socioeconomic factors (baseline age,
sex, years of education, longest held occupation, household
income, NSES, and marital status) and lifestyle factors (outdoor
physical activity, smoking status), BMI, ADL, as well as
time-invariant traffic-related NOx (CALINE4) and noise
(SoundPLAN) exposures estimated for the baseline year and the
5-y prior to baseline averages for the LUR-derived NO2 and
PM2:5 and for temperature (GRIDMET). NOx, noise, NO2,
PM2:5, and temperature were treated as continuous variables and
standardized according to their IQRs, respectively. Baseline years
of education, BMI, and ADL were also treated as continuous var-
iables and sex, longest held occupation, household income, out-
door physical activity, smoking status, marital status, and NSES
as categorical variables, as shown in Table 1.

We first estimated effects from a model adjusting only for
baseline age, sex, and years of education. We then added longest
held occupation and household income, outdoor physical activity,
and smoking status (which are the major risk factors for cardio-
metabolic diseases), as well as an NSES indicator, considering
that the O3 estimates vary spatially. To address the potential con-
founding by other air pollutants and temperature, we also coad-
justed one by one for local traffic-related NOx and noise and for
total NO2 and PM2:5 concentrations, as well as for temperature,
individually. We also used a restricted cubic spline model to
describe the dose–response relationship between O3 exposure
and diabetes risk. Various averaging periods were also con-
structed to investigate the associations between time-varying O3
exposure in different windows and the risk of diabetes, including
1-, 2-, 3-, and 4-y averages prior to the onset of an event for
everyone in the risk set at the event time. In addition, the 5-y av-
erage O3 exposure prior to baseline year was used to examine the
relationship between O3 and diabetes. We also repeated the anal-
yses using the O3 estimates generated from the unsmoothed sur-
face with 30- × 30-m resolution.

We further examined the association between O3 and diabetes
stratified by outdoor leisure-time activity levels and by including
an interaction term between outdoor leisure-time activity and O3

exposure into the model. As in our main analyses, the O3 expo-
sure and outdoor leisure-time activity levels were treated as a
continuous and a categorical variable (fourth vs. lower three
quartiles), respectively, and a pinteraction term was derived.

In sensitivity analyses, we additionally adjusted for baseline
BMI, marital status, and ADL, considering that these factors
might influence lifestyle or where participants live and thus act as

Table 1. Summary of characteristics of the participants at baseline used for
incidence analyses, Sacramento Area Latino Study of Aging, 1998–2007.

Characteristics
{mean±SD or N (%)}

Total
(n=1,090)

Diabetes

No-event
(n=904)

Event
(n=186)

Baseline age [y (mean±SD)] 70:5± 6:9 70:8± 7:1 69:3± 5:9
Sex [N (%)]
Male 446 (40.9) 363 (40.2) 83 (44.6)
Female 644 (59.1) 541 (59.9) 103 (55.4)

Years of education (mean±SD) 7:5± 5:3 7:5± 5:3 7:6± 5:4
Residential area [N (%)]
Urban 954 (87.5) 785 (86.8) 169 (90.9)
Rural 136 (12.5) 119 (13.2) 17 (9.1)

Longest held occupation [N (%)]
Nonmanual 232 (21.3) 197 (21.8) 35 (18.9)
Manual 650 (59.6) 540 (59.7) 110 (59.1)
Other (housewives and unemployed) 196 (18.0) 158 (17.5) 38 (20.4)
Missing 12 (1.1) 9 (1.0) 3 (1.6)

Marital status [N (%)]
Single/never married 35 (3.2) 29 (3.2) 6 (3.2)
Married/living with someone
as a spouse

636 (58.3) 519 (57.4) 117 (62.9)

Widowed 276 (25.3) 231 (25.6) 45 (24.2)
Divorced 111 (10.2) 98 (10.8) 13 (7.0)
Separated 32 (2.9) 27 (3.0) 5 (2.7)

Household Income
{$=month [N (%)]}

<1,000 465 (42.7) 386 (42.7) 79 (42.5)
1,000–1,499 220 (20.2) 182 (20.1) 38 (20.4)
1,500–1,999 121 (11.1) 108 (12.0) 13 (7.0)
2,000–2,499 108 (9.9) 90 (10.0) 18 (9.7)
≥2,500 161 (14.8) 125 (13.8) 36 (19.4)
Missing 15 (1.4) 13 (1.4) 2 (1.1)

NSES [N (%)]a

Low (NSES=1) 352 (32.3) 299 (33.1) 53 (28.5)
Low-middle/middle (NSES=2, 3) 621 (57.0) 515 (57.0) 106 (57.0)
Middle-high/high (NSES=4, 5) 117 (10.7) 90 (10.0) 27 (14.5)

Baseline smoking status [N (%)]
Never/nonsmoker 515 (47.3) 441 (48.8) 74 (39.8)
Former smoker 438 (40.2) 339 (37.5) 99 (53.2)
Current smoker 137 (12.6) 124 (13.7) 13 (7.0)

Baseline outdoor leisure-time
physical activity [N (%)]b

Higher level 263 (24.1) 230 (25.4) 33 (17.7)
Lower level 827 (75.9) 674 (74.6) 153 (82.3)

Baseline BMI (mean±SD) 29:2± 5:6 28:9± 5:7 30:6± 4:9
ADL summary score (mean± SD) 0:5± 2:1 0:5± 2:2 0:5± 1:7
5-y Average O3 prior to baseline

[ppb (mean±SD)]
46:0± 11:2 45:7± 10:9 47:6± 12:5

Note: There were no observations with missing data for the continuous variables. ADL,
activities of daily living; BMI, body mass index; MET, metabolic equivalent of task;
NSES, neighborhood socioeconomic status; O3, ozone; SD, standard deviation.
aNSES is represented as a score ranging from 1 to 5 (low to high NSES) depending
on six 2000 U.S. Census (https://www.census.gov/programs-surveys/decennial-census/
decade.2000.html) estimates: percentage of a) individuals aged ≥25 y without a high
school diploma, b) individuals below the poverty limit, c) individuals aged ≥16 y who
had been in the workforce at one time but are unemployed, d) households owning their
home, e) vacant housing units, and f) median number of rooms in a household.
bSeven physical activities (doing yardwork, taking walks, swimming or working out,
dancing, hunting or camping or boating, golf or other moderate exercise games, walk-
ing around the neighborhood) that are likely to be performed outdoors were selected
to be included in the measure of outdoor leisure-time physical activity level, the MET
value was multiplied by the reported time (hours/week) spent performing the activity
(MET-hours/week) for each activity and then summed up to generate a cumulative
outdoor leisure-time physical activity measure, dichotomized using the cutoff point of
74.5 MET-h/wk.
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potential confounders. We also repeated analyses using stratified
Cox regression models with different age groups (<70, 70–80,
≥80 years of age) as strata. Furthermore, we applied the O3 esti-
mates generated by the U.S. EPA Bayesian space–time
Downscaler model and repeated the analyses. Last, to examine
whether the increased risk of diabetes due to O3 exposure among
those with higher outdoor leisure-time activities might simply
reflect an effect of higher physical activity in general, we repeated
the analyses for the 10 major activities likely performed indoors
(Table S1), dichotomizing indoor activity at the same cutoff point
as outdoor activity (<74:5 vs. ≥74:5 MET-h/wk).

SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all
the analyses. Complete-case analyses were also performed.

Results
The average age of study participants was 70 y at baseline, and
they had on average received 7.5 ( ± 5:3) y of formal education
(Table 1). Less than half (41%) were men and 87.5% lived in an
urban area. Approximately 60% of the participants held a manual
labor job during most of their lifetime, 43% reported a monthly
household income of <$1,000. Compared with those who did not
develop diabetes during follow-up, participants who developed
diabetes were more likely to be former smokers and had a higher
BMI and were less likely to be physically active outdoors. The
mean value for the reported participation in outdoor physical ac-
tivity was 57.2 ( ± 52:7) MET-h/wk at baseline among those who
reported engaging in at least one of the seven selected activities
(Table S1). Compared with the 827 participants who were classi-
fied as having lower levels of leisure-time outdoor physical activ-
ities (<74:5 MET-h/wk), participants with a higher level
of leisure-time outdoor physical activity (≥74:5 MET-h/wk,
n=263) were more likely to be men, to have worked in manual
labor jobs as their longest held occupation, and to be married
(Table S2). The 5-y average concentration of O3 at the residence
prior to baseline year was ∼ 46 ð±11:2Þ ppb (Table 1), and an-
nual average O3 concentrations during the study period ranged
from 43 to 50 ppb (Table S3). Pearson’s correlation coefficients
for O3 and other air pollutants at baseline ranged from –0:23 (for
NO2) to –0:06 (for PM2:5) (Table S4).

During a maximum of 10 y of follow-up, each participant on
average completed ∼ 5 follow-up visits and ∼ 10 phone calls. A
total of 177 participants died without a diabetes diagnosis during
follow-up; among the 260 participants who did not return for the
last follow-up visit, 85% finished at least one follow-up visit. The
average person-time accrued for cases was ∼ 4:6 (range: 0.9–9.1
y), and ∼ 5:8 y for noncases (range: 0.1–9.7 y). In total, 186 partic-
ipants developed incident diabetes. Among them, 17% of the cases
were identified only by the fasting glucose test result, and 11% by
self-report diagnosis and medication use. A restricted cubic spline
model suggested that hazard ratios (HRs) for incident diabetes are
linear with increasing O3 exposure (Figure S2). Based on the Cox
model, the risk of developing diabetes increased by 13%
{HR=1:13 [95% confidence interval (CI): 1.00, 1.28]} per 10-ppb
(IQR) per unit increase in O3, after adjusting for demographic-
socioeconomic and lifestyle factors (Table 2). The effect estimates
for O3 and onset of diabetes remained similar when we further
adjusted for BMI, marital status, ADL, and other pollutants,
including NOx, NO2, PM2:5, noise, and temperature, respectively.
In the models where we also individually coadjusted O3 exposure
estimates for local traffic-related NOx or noise, total NO2 or PM2:5
concentrations, exposure to PM2:5 or NO2 were also positively
associated with incident diabetes [HR=1:20 (95% CI: 1.03, 1.40)
per 1:9 lg=m3 increase in PM2:5; HR=1:02 (95% CI: 0.98, 1.05)
per 6:1-ppb increase in NO2], but no associations between traffic-
related NOx or noise exposures and diabetes were observed (Table

S5). Repeating analyses for the O3 estimates from the 30- × 30-m
resolution surface, results did not change much [HR=1:11 (95%
CI: 1.01, 1.22)] (Table S6). When using the O3 estimates derived
from the U.S. EPADownscaler model, the association between O3
and diabetes attenuated [HR=1:07 (95% CI: 0.93, 1.24) per IQR
(1:5 ppb) increase in O3] (Table S6). The results remained similar
[HR=1:20 (95% CI: 1.02, 1.41) per IQR (9:6 ppb) increase] when
using the 5-y average O3 exposure prior to baseline (Table S7).
The associations between incident diabetes and O3 exposure for
different averaging periods (1- to 4- y average) were similar (Table
S8). Our results changed only minimally for the stratified Cox
regressionmodel with different age groups as strata (Table S9).

Overall, higher levels of leisure-time outdoor physical activity
were negatively associated with the incidence of diabetes
[HR=0:64 (95% CI: 0.43, 0.96)]. In the model that contained an
interaction term between outdoor physical activity (fourth vs.
lower three quartiles) and O3 exposure, the O3-related risk of
developing diabetes was 1.5 times higher in the higher-activity
group relative to the lower-activity group (pinteraction = 0:01)
(Figure S3). The estimated HR for incident diabetes among those
physically active outdoors was 1.52 [HR=1:52 (95% CI: 1.21,
1.90)] per IQR (10 ppb) increase in average 5-y O3 concentration
compared with 1.04 (95% CI: 0.90, 1.20) for those with lower
levels of outdoor physical activity (Table 3). When instead strati-
fying by lower or higher indoor physical activity, we did not find
any evidence for effect measure modification of the O3 associa-
tion by indoor activity with incident diabetes [indoor physical
activity<74:5 MET-h/wk: HR=1:36 (95% CI: 0.72, 2.59) per
10-ppb increase in O3; indoor physical activity ≥74:5 MET-h/
wk: HR=1:12 (95% CI: 0.97, 1.27) per 10-ppb increase in O3]
(Table S10).

Discussion
During the 10-y of follow-up in the SALSA study, O3 exposure
was associated with an increased risk of developing incident dia-
betes among Mexican Americans living in the Sacramento area.

Table 2. Effect estimates (and 95% CIs) from Cox models for O3 exposure
on incident diabetes.

Model

5-y Average O3, per 10-ppb increase

HR 95% CI

1a 1.14 1.00, 1.29
2b 1.13 1.00, 1.28
3c 1.10 0.98, 1.26
4d 1.14 1.00, 1.30
5e 1.13 1.00, 1.20
6f 1.12 0.98, 1.27
7g 1.13 1.00, 1.29
8h 1.13 0.99, 1.29

Note: The time-invariant traffic-related NOx and noise exposures, NO2, PM2:5 exposure,
and temperature were treated as continuous variables and standardized according to their
respective IQRs; baseline age, years of education, BMI, and ADL were also treated as
continuous variables. Sex, longest held occupation, household income, outdoor physical
activity, smoking status, marital status, NSES were used as categorical variables. In
Model 1, there were 1,090 observations and 186 cases, with 6,087 person-years in total;
in Models 2–8, there were 1,075 observations and 184 cases, with 6,022 person-years in
total. ADL, activities of daily living; BMI, body mass index; CI, confidence interval;
HR, hazard ratio; IQR, interquartile range; NO2, nitrogen dioxide; NOx, nitrogen diox-
ides; NSES, neighborhood socioeconomic status; O3, ozone; PM2:5, fine particulate mat-
ter (PM with an aerodynamic diameter of ≤2:5 lm).
aAdjusted for baseline age, sex, and education.
bPrimary model, adjusted for covariates in Model 1 plus longest held occupation, NSES,
outdoor physical activity, smoking status, and household income at baseline.
cAdjusted for covariates in Model 2 plus BMI, marital status, and ADL.
dAdjusted for covariates in Model 2 plus traffic-related NOx.
eAdjusted for covariates in Model 2 plus NO2 exposure.
fAdjusted for covariates in Model 2 plus PM2:5 exposure.
gAdjusted for covariates in Model 2 plus traffic-related noise.
hAdjusted for covariates in Model 2 plus temperature.
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The effect estimates changed little after inclusion of other pollu-
tants in the models. Higher outdoor leisure-time physical activity
was negatively associated with the incidence of diabetes.
Furthermore, the association between O3 and incident diabetes
was stronger among participants classified as having higher levels
of leisure-time outdoor physical activity than among those classi-
fied as having lower levels.

Growing evidence indicates that ambient air pollution contrib-
utes to the development of diabetes (Brook et al. 2013; Chen et al.
2013; Coogan et al. 2012; Park et al. 2015; Puett et al. 2011); but
few longitudinal studies to date have investigated the impact of
O3 on diabetes. One of these is a large cohort of 45,231 women
(on average, ∼ 38 years of age at recruitment) enrolled in the
Black Women’s Health Study with 16 y of maximum follow-up
that reported a HR for incident diabetes of 1.18 (95% CI: 1.04,
1.34) per 6:7-ppb increase in O3 exposure (Jerrett et al. 2017).
Another study consisting of 410,267 women assembled through
the Bureau of Vital Statistics and Office of Health Statistics and
Assessment, Florida Department of Health, estimating the risk of
gestational diabetes reported an odds ratio of 1.18 (95% CI: 1.15,
1.21) per 5-ppb increase in O3 exposure during pregnancy (Hu
et al. 2015). In addition to diabetes incidence, previous studies
examined the potential influence of O3 exposure on metabolic
biomarkers such as hemoglobin A1c (Lanzinger et al. 2018) and
fasting glucose levels (Li et al. 2018). However, these were
mostly cross-sectional studies with short-term O3 exposure and
do not represent longer-term influences of O3 on chronic health
outcomes. Although epidemiological evidence is limited and
inconsistent, animal experiments suggest that O3 exposures may
induce insulin resistance. For example, comparing O3-exposed
Wistar rats to rats breathing clean air, 16 h of O3 exposure
increased the rats’ fasting glucose levels by 23%, also whole-
body insulin resistance was induced and oxidative stress bio-
markers such as 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal, and
carbonyls were found to be increased (Vella et al. 2015). Another
animal study treating Brown Norway rats demonstrated that glu-
cose intolerance and hyperglycemia were caused in rats of all
ages after 12 h of O3 exposure (1.0 ppm, 6 h/d for 2 d) (Bass et al.
2013). These experimental results indicate possible mechanisms
such as oxidative stress induced by O3 inhalation, followed by
systemic pro-inflammatory and autonomic responses via translo-
cation of pro-oxidant molecules from the pulmonary alveolar
fluid into systemic circulation (Vella et al. 2015), similar to what
has been shown for other air pollutants (Rao et al. 2015).

Physical activity is well known and widely recognized for
its health benefits, ranging from reduced risk of chronic diseases,
including diabetes, to functional preservation during aging
(Blair 2009). However, physical activity can alter the breathing

frequency and tidal volume and encourage oral vs. nose breathing
and thus may increase the amount of O3 reaching the lower air-
ways and tissues relevant for gas exchange (Morse 2005). It has
been shown that the O3-related physiologic response varies with
the distribution of O3 in the upper and lower airways, breathing
patterns, and the anatomy of airways and airspaces (Ultman et al.
2004). In a study that experimentally exposed 32 male and 28
female nonsmokers to O3 during exercise, the researchers
observed that O3 uptake efficiency was negatively related to
breathing frequency, which could lead to a decreased time for O3
absorption but positively associated with tidal volume, which
drives O3 more deeply into the lung, where O3 can act on the air-
way epithelium because it is not protected by a thick mucus layer
(Ultman et al. 2004). In a chamber study of 22 nonsmoking adult
men, pulmonary reactivity was increased after 5-h of exercise
(representative of a day of moderate to heavy work or play) even
at low O3 concentrations (Horstman et al. 1990). Thus, people
engaging in physical activities outdoors while exposed might be
affected adversely owing to the increased inhalation of air pollu-
tion (McConnell et al. 2002). This might explain our observation
that ambient O3 exposure contributes to the development of type
2 diabetes, particularly among those with higher levels of leisure-
time outdoor physical activity.

Our results are supported by some previous studies. A cohort
study of 3,535 children recruited from schools in Southern
California reported a more than 3-fold increased risk of develop-
ing asthma in children who engage in intensive exercise
[relative risk= 3:3 (95% CI: 1.9, 5.8)] when exposed to high O3
concentrations, compared with those who did not engage in out-
door sports (McConnell et al. 2002). Similarly, a Hong Kong
study of 821 children 8–12 years of age observed that the maxi-
mum oxygen intake was significantly lower among those who
exercised in high vs. in low air pollution areas, indicating that the
beneficial effect of physical activity might be impeded by air pol-
lution (Yu et al. 2004). On the other hand, a case–control study
of 24,053 Hong Kong Chinese reported that among ≥65-y-old
never-exercisers (exercised <once=month) the excess risks of all-
cause mortality were higher [1.75% (95% CI: 0.25%, 3.23%) per
10-lg=m3 increase in O3 exposure] compared with those who
reported exercising (≥once=month) outdoors during the 10 y
before death (Wong et al. 2007). Recently, researchers from the U.
S.-based prospective Nurses’ Health Study (NHS; n=104,990,
1998–2008) also found no statistically significant interactions
between PM2:5 exposure and physical activity (overall, walking,
vigorous activity) for cardiovascular disease risk and overallmortal-
ity (Elliott et al. 2020). However, the NHS focused on recreational
activities such as jogging, biking, and calisthenics, and these female
nurses were on average 63 years of age at the end of follow-up; that
is, theyweremuch younger than the SALSA cohort participants.

Overall, previous studies have varied greatly in study
design, exposure characteristics, population, and outcomes, as
well as in the types of outdoor physical activities and physical
activity levels studied (Strak et al. 2010; Tainio et al. 2021).
Although the evidence for the impact of air pollution and physi-
cal activity on health is mixed, physical activity has been con-
sistently associated with a decreased risk of cardio-metabolic
disease. However, breathing frequency, tidal volume, and frac-
tion of oral breathing—which are influenced by the intensity of
physical activity—will affect particle deposition and gas
absorption in the respiratory tract (ICRP 2015), and might
attenuate the benefits of physical activity. There are multiple
physiological and behavioral mechanisms linking physical ac-
tivity and air pollution, but the biologic interaction between air
pollution exposure and physical activity for health outcomes is
not yet well understood (Elliott et al. 2020; Tainio et al. 2021).

Table 3. Effect estimates (and 95% CIs) from Cox models for O3 exposure
on incident diabetes, stratified by outdoor leisure-time physical activity
level.

Outdoor physical
activity N Cases (n)

5-y Average O3,
per 10-ppb increase
[HR (95% CI)]

Lower level 827 153 1.04 (0.90, 1.20)
Higher level 263 33 1.52 (1.21, 1.90)
pinteraction 0.01

Note: Model was adjusted for baseline age, sex, education, longest held occupation,
NSES, smoking status, and household income. Baseline age and years of education
were treated as continuous variables. Sex, longest held occupation, household income,
outdoor physical activity, smoking status, marital status, and NSES were used as cate-
gorical variables. The estimated coefficient (standard error) of interaction is 0.38 (0.13).
The outdoor physical activity level cutoff was 74.5 MET-h/wk. The outdoor physical ac-
tivity is an estimate based on leisure-time activities that were assumed to be performed
mostly outdoors. CI, confidence interval; HR, hazard ratio; MET, metabolic equivalent
of task; O3, ozone; NSES, neighborhood socioeconomic status.
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In coexposure models, apart from O3 exposure, we also
observed positive associations between NO2, PM2:5, and incident
diabetes, corroborating previous studies (Bai et al. 2018; Hansen
et al. 2016; Renzi et al. 2018). When we repeated the analyses
using the estimates derived from the U.S. EPA Downscaler,
effect estimates attenuated, possibly because the Downscaler’s
chemical transport model targets a 10-km grid centered of census
tracts and is being calibrated through a Bayesian algorithm to the
sparse government monitoring sites. Thus, it has a relatively
coarse resolution and does not capture the smaller-scale varia-
tions of O3 exposure in the Sacramento area. Although associa-
tions between 1- or 2-y annual averages for O3 and incidental
diabetes were similar to those of a 5-y average, these short-term
exposure measures likely simply reflect the longer-term and not
time but, rather, spatially varying exposures that influence these
chronic health outcomes.

SALSA is a population-based longitudinal cohort study with
repeated follow-up exams and has allowed us to study incident
diabetes over a 10-y period. The longitudinal design also pro-
vided an opportunity to estimate the association between air pol-
lution exposure, physical activity, and diabetes in in the proposed
temporal sequence because prevalent diabetes might also be fol-
lowed by increases in activity if physical activity is recommended
by health care providers. This is one of the first studies explor-
ing the impact of O3 exposure on diabetes risk in Mexican
Americans, a population with a high prevalence of diabetes. O3
exposure was estimated based on the participants’ residential
addresses geocoded by global positioning system readings during
home visits. Exposure measures were generated with an LUR
model that incorporated data from two O3 saturation monitoring
campaigns we conducted across the Sacramento metropolitan
area in the spring and winter of 2016 at 40 sites. These were com-
bined with land use and meteorological data, and our model cap-
tures important air pollution sources from traffic and goods
movement, wood burning, and industry. In addition, our LUR
model is particularly well suited for estimating finer-scale spatial
variation in these pollutants. Ambient O3 levels increase with
growing distance from roadways, and we used a 1-km smoothing
approach to take regional photochemistry into account (Apte et al.
2017) when generating O3 exposure levels for immediate neigh-
borhoods around residences that may best represent outdoor ex-
posure in physically active participants.

There are several limitations to be noted. O3 exposure con-
centrations were assessed based on the participants’ geocoded
address at baseline, using an LUR model with O3 monitoring
data input from only 1 y (2016) and two seasons, and we annual-
ized exposures using data from the nearest continuous govern-
ment monitor for O3. We lacked lifetime residential histories and
we did not take into account growing population density and land
use changes, thus exposure misclassification cannot be ruled out.
However, in the SALSA cohort, the average length participants
reported having lived at their baseline residences was 22 y and
90% remained in California throughout the study period. In addi-
tion, the spatial pattern of traffic in the Sacramento area did not
change much during the study period (Kang et al. 2012; Paul et al.
2020). Thus, our exposure measures based on the baseline
addresses likely characterize long-term spatial O3 distribution
around each participants’ residence before and throughout the
study period. In addition, we conducted the monitoring cam-
paigns in spring and winter, thus it is possible that the absolute
annual average concentrations are underestimated because of a
lack of summer measurements. Given that SALSA enrolled par-
ticipants who were ≥60 years of age at baseline, it is reasonable
to assume that most of their outdoor physical activity took place
in close proximity to their residence, which our model represents

well given its 1- × 1-km resolution. Some participants might have
developed diabetes between study visits, and some might not
have been diagnosed owing to limited health care access.
However, fasting glucose was measured at each study visit and
we assigned the visit date that triggered the diabetes classification
as the event onset date, thus the mismeasurement of the event
onset time is likely minimal. Selection bias resulting from loss to
follow-up is not expected to influence our results because loss
to follow-up was most likely nondifferential to participants’
exposure at baseline and diabetes status during follow-up.
Furthermore, excluding participants with prevalent diabetes at
baseline was necessary to assess the influence of O3 on diabetes
incidence. However, given the age range of our cohort at enroll-
ment and that diabetes was already prevalent at baseline in one-
third of our cohort, those who were diagnosed during follow-up
may have been less susceptible to developing diabetes in general
as well as possibly in relation to O3 exposure. The possibility of
reverse causation cannot be ruled out if participants’ outdoor
physical activity was increased to successfully counteract ele-
vated blood glucose levels prior to enrollment. But such counter-
measures as treatments of high glucose levels would likely only
follow a diabetes diagnosis, which would have been reported at
baseline. In this study, we did not have time-varying physical ac-
tivity information and we lacked the location information for the
physical activities, thus the possibility of misclassification of
physical activity level cannot be ruled out. However, there was
no indication for effect measure modification of the association
between O3 and incident diabetes when using physical activity
level based on indoor activities. This indicates that the increased
risk of diabetes among those with higher levels of outdoor
leisure-time physical activity did not simply reflect an effect of
higher physical activity in general but, rather, specifically for out-
door activity. In addition, although most of the participants were
already retired at baseline, some participants might have contin-
ued to work, including holding outdoor occupations during
follow-up. Thus, it is possible that some of the observed effect
measure modification might be partially attributable to outdoor
occupational activities.

Conclusion
Our study results suggest that O3 exposure increases the risk of
diabetes among older Mexican Americans, particularly among
those with higher levels of leisure-time outdoor physical activity.
These findings are of great relevance for public health protection.
Policies and strategies are needed to reduce O3 exposure in com-
munities to guarantee that the health benefits from physical activ-
ity are not diminished by O3 pollution exposure, especially in
vulnerable populations.
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